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SUMMARY 
A harbor with two coupled rectangular basins is subjected to periodic incident waves. Ignoring friction the 
scattering problem is solved by the method of matched asymptotics for narrow junctions. The example of 
two identical basins is analyzed in detail for the resonant spectrum and response. It is shown that for certain 
modes the inner basin is less shielded. 

1. Introduction 

Since the paper of Miles and Munk [1] who first treated harbor oscillations by a scattering 
theory, the study of harbor resonance has been steadily progressing both theoretically and 
experimentally. In the context of infinitesimal waves over constant depth, effective numerical 
methods have been worked out for harbors with a straight coast but arbitrary basin form 
(Hwang and Tuck [2], Lee [3], and Su [4]). For  variable but shallow depth, a versatile 
hybrid finite element method has recently been devised by Chen and Mei [5] for harbors. 
with arbitrary basin form and quite general coastline or breakwater configuration. Thus 
insofar as the engineering needs of computational tools are concerned, the linearized long 
wave theory is in a rather satisfactory state. 

The analytical aspects of harbor theory, however, have been thoroughly studied only for  
a harbor with one basin ([1], Garrett  [6] and Miles [7]) or a basin with an entry channel 
([7], Carrier, Shaw and Miyata [8]) and partially studied for the Helmholtz modes in 
coupled basins by Miles and Lee [9]. Lee and Raichlen [10] and [11] recently examined 
numerically and experimentally a harbor with two circular basins of equal areas coupled 
through a narrow passage. Two interesting features have been revealed. One is that the 
resonant peaks on the plot of amplification factor vs. wave number are doubled in density 
and appear in pairs, in comparison with the case of one basin. The other is that, if the line 
of centers of  the two basins is normal to the coast, the (lower/higher) resonant mode o f  
the pair i.e., the mode with the (smaller/larger) resonant frequency, gives rise to greater 
maximum response in the (inner/outer) basin. Moreover, the maximum at the lower mode 
is greater than that at the higher mode, see Fig. 7 of [10], Figs. 16 and 26 of [11]. This 
implies the interesting possibility that the inner basin can be less protected. This paper aims 
at deducing these and other features analytically. 

Journal of Engineering Math., Vol. 10 (1976) 333-353 



334 C. C. Mei and t). Unliiata 

To achieve these aims we restrict ourselves to constant depth and basins of rectangular 
,form so that analytical solutions can be explicitly obtained. We shall make a further sim- 
plifying assumption that the junction widths are small compared to the basin size and the 
wavelength of interest. By using the method of matched asymptotic approximations similar 
to Buchwald [t2] and Tuck [13], the solution for general basin dimensions is given in 
Section 2. The method can be applied to other geometries which are combinations of 
rectangular basins and narrow channels, see Llnltiata and Mei [14]. 

The main purpose of this paper is the deduction of physical implications. The special 
,example of two equal basins of which the line of centers is normal to a straight coast is 
discussed in some detail. The spectrum of the resonant modes is first analyzed in Section 3. 
Of particular interest are the effects of junction widths on the pair of modes closely associated 
with the natural mode k,,, of  a closed constituent basin. The resonant responses of the most 
important  and the first few modes are discussed in Section 4. In Section 5 we discuss how 
the present results are extended to include the effect of junctions of finite thickness. Sample 
numerical results are given in Section 6 which confirm the analytical conclusions, and are 
,consistent with the work of Lee and Raichlen. 

2. Approximate solution for small ka 

Let the motion be simple harmonic in time so that the free surface displacement can be 

written as 

q(x, y, t) = Re{~(x, y)ei~t}. (2.1) 

The governing equation for ~ is 

(V 2 + k2)~ = 0 (2.2) 

where co = (gh)~k in shallow water. 
In the far field away from the junctions, the horizontal length scale is the wavelength 

( ~  1/k). For small junctions ka ~ 1, the scattered wave field can be approximated by a 
point  source centered at the junction. Assume the incident wave to have amplitude A and 
to approach the coast perpendicularly. The one-term outer solution for the ocean is just 
the source solution superposed on the incident and reflected waves, or 

kx - --Jc~ Q o ( J  H(oa)(kr)~ ' x >  O, (2.3) ~ o = 2 A  COS 
g \ z  / 

where r 2 = x 2 -[- yZ, and H(o 2) is the Hankel function of the second kind. Qo is the un- 
known discharge* at the harbor mouth. For  simplicity the (x, y) coordinates are centered 
at  the junction J (Fig. 2.1). 

For the basins, it is convenient to express the source solutions in a universal form. Thus, 
fo r  each source we shall use a coordinate system with the origin at a corner such that the 
basin is in the first quadrant (Fig. 2.1). The one term outer solutions are 

* In this paper, all discharges refer to a unit depth of fluid. 
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b" B" @ i  J" 

Figure 2.1. Definition sketch and coordinate systems. 

,= 

j(D 
Basin B:  ~B = - - -  [Q1G1 + Q2G2], (2.4a) 

0 

jco 
Basin B ' :  ~B' = Q[G[. (2.4b) 

g 

The discharges Q1, Q~ and Q2 are to be found. The Green's  funct ion for  a unit source on 

the boundary  has been given in [1] and is quoted here for  convenience. The explicit solution 

for basin B is 
oo 

G. =- G(x~, y~[y~) = E X.(x~)Y.(y~)Y.(y~), 
t ~ = O  

with* 

X.(x~) - 
e. cos K.(x~ - l) 

K,b sin K,l 

go(y~) = c o s ( n ~ y 2 b ) ,  

K .  = [k 2 - (n~/b)2] ~, 

= 1, 2, (2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

where e, is the Jacobi  symbol :  % = 1, en = 2, n = 1, 2, 3 . . . .  and y ,  is the center o f  the 
junct ion ~. 

* The notation Yn should not be confused with Weber's Bessel function. 
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For the basin B', G[ is defined similarly by replacing x[, y[, y~, l', b' for their unprimed 
counterparts above. In particular, we have, 

K'~ = [k 2 - (nrc/b')2] �89 (2.6) 

For small kr,  the two term inner expansion of the outer solution ~o in the neighborhood 
of the junction J is straightforward and is 

~o ~ 2A - j - -  Qo + - -  In 7 - j - -  - -  in r + O(kr  In kr),  

x > O ,  right of J, (2.7) 

where in 7 = 0.5772157 = Euler's constant. The two-term inner expansions of the outer 
solutions ~B, ~ ,  are somewhat lengthly, and are obtained by first performing partial 
summation of a series in order to produce a logarithmic term which represents the singular 
part. We leave the details to Appendix A and only quote the results here: 

~ .~ -  - j g Q t  In s i n - i f -  + F1,1 - j g Q z G z , t - j g  ~ l n r  1, 

xl > O, left of J ;  (2.8a) 

G ~- - j - - [ Q , G , , z l - j - - Q z l - - l n [ - - r - s i n  + F2,2 - j - -  lnr2, 
g g g ;~ 

x2 > O, right of J '  (2.8b) 

where J '  denotes the inter-basin junction, and 

~B'- - J g Q ;  In . sm +F;,~ - j - - - -  

with 

co Q[ 
In r[, 

g 

x[ > O, left of d' (2.9a) 

r ~ = x ~ + ( y ~ - y ~ ) ,  a =  1,2; = + ( y [ _ y [ ) 2 .  (2.9b) 

This approximation is derived under the restriction that the junctions must be far from the 
corners. This restriction is assumed throughout our paper and the modification otherwise 
needed is discussed in [14]. G1, 2 represents the intensity of the Green's function G1 as 
felt at the junction J ' :  

~o e . y . ( y O y . (  b _ Y2) 
G12 =- G(x t  = l, y l  = b - y2 lY l )  = ~ (2.10) 

' .=o K,,b sin Knl 

By definition of Y., Y . ( y l ) Y . ( b  - Yz) = Y.(b - yl)Y,(y2); it follows that 

G2,1 = G(x2 = I, Y2 = b - Yl[Y2) = G1,2 (2.11) 

which is simply the principle of reciprocity. 
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Lastly F,,~ is the regular part of the series of G~ evaluated at the source point e itself: 

cot kl ~o / cot K,l 1 ~ 2 
F ,~- ,  kb +2121-,~ k ~ + nzcJY"(Y~)" (2.12) 

F~,I is defined similarly with b, /, K,, Yl replaced by b', l', K' ,  and 9[ respectively. 
The near field observer feels the presence of the junction and the adjoining breakwaters, 

but not other sides of the basins. Since the local length scale is a, the governing equation 
is approximately Laplacian V2~ = O(ka) z. Thus we consider the potential flow past a 
typical slit in an infinitely long thin barrier. This inner problem has been studied by Tuck 
[13] from which the following outer expansions of the two term inner solutions may be 
inferred. We have for r/a1, rl/al ~> 1 

al ( --lnlnr' r }' ~s ~ - c l y I - M l l n ~ -  + M  1 

and for r2/a2, r~/a2 >> 1, 

a2 ( lnr2) 
( j  ~ C 1 ~ M 2 in ~ -  + M 2 _ In r[J' 

The omitted terms are of O(a/r) 2. 

x > 0 (2.13) 
x t > 0  

X > 0 (2.14) 
X[ > 0  

The unknown coefficients are Qo, Q1, Qz, Q[, Ms, M2, Cl and C2. By matching the con- 
stant terms and the logarithmic terms in four intermediate regions (both sides of the two 
junctions), eight algebraic equations are obtained. They are easily solved to give: 

nM 1 -  J~176 - J ~  2 A [ J  + FI,I - I  G~'z7 -1 (2.15a) 
g 

jooQ [ -jcoQ z 
zcMz . . . . .  ~zM 1 GI,z/W (2.15b) 

9 9 

where 

W - F[, 1 + F2, z - 1", (2.16) 

I = - -  In 4b ~Tka z sin roY1 (2.17) 
b 

and 

I ' - - -  In bb' =Za2 sin ~zY;'](sin . (2.18) b' }\ b 
The constants C a and C 2 can be easily obtained but will be omitted here since they do not 
appear in the outer solutions on which all subsequent discussions will be focused. We 
remark that I depends on k while I '  does not. 

With the discharges found the outer solutions are complete. Substitution into (2.3), 
(2.4a) and (2.4b) gives the response of the ocean and harbor regions at any point far away 
from the junctions. 
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Instead of the local responses as represented by the preceeding equations, it is convenient 
to refer to the normalized mean-square response for each basin, 

I " ; ' I "  IE f'o az~ =- dt dxl dyl[Re(;neJ~ 2 
bl 2~z 

1 rcM 1 2rE 2G~,z E12 + { G , , z ) 2  E 3 (2.19a) 
=-4 L '  w ' k - w - 7  

1 2rcc~ F 2'~/~ F v [i,' 
a~, - b'l' J0 dtJb dx[ jo dy[[Re([weJO"/2A)]: 

= 4- 2A E; (2.19b) 

where 

~ (K.b~"YZ (y~)sin K J)  z L[ si_n 2Kd-]2Kd E= = ,~o 1 + A, c~ = 1, 2, (2.20a) 

co =.Yn(yOr=(b - y=) ( sin K.I~  
E"2 = n=o y" (~Tb, b s i ~ - ) ~ -  cos Knl + k 7  l ,]. (2.20b) 

E[ is defined similarly as E, with K,, b, l, Yl replaced by K~, b', l', y[ respectively. We omit 
the straightforward details which require the use of orthogonality of Y,. 

From these formulas numerical results can be obtained simply and will be presented in 
Section 6. The case in which the two mouths Y and d' are on adjacent sides of the outer 
basin can be similarly treated but is omitted here. We now seek analytical implications. 

3. Resonant wave number spectrum of the harbor with coupled basins 

Although k is always real, the poles in the complex k-plane of the scattered wave amplitude, 
i.e., of the discharge M1 through the harbor mouth, correspond to the resonant peaks of 
the forced oscillation in the basins. The closer the pole is to the real k axis, the greater 
the peak response. Resorting to the complex k-plane is a well-known mathematical artifice 
in other branches of physics, e.g., quantum scattering theory, see Sitenko [15], and has 
also been used in water waves, Longuet-Higgins [16]. One must however not conclude that 
the discharges M1 and Me will actually be infinite, since k is physically never complex. 

From (2.15a, b) it is evident that the roots of the complex equation 

J + Vl, 1 - I G2'z - 0 (3.1) 
2 W 

correspond to these poles. Let a typical root be denoted as 

k = k + jfc. (3.2) 

If the imaginary part ~: is small, it gives the rate of radiation damping, the existence of 
which renders the peak amplitudes finite. The real part k is then the resonant wave number. 

Journal of Engineering Math., Vol. 10 (1976) 333-353 



Resonant scattering by a harbor with two coupled basins 339 

For  nar row J one expects that  

1, 

so tha t  (3.1) can be expanded in the fo rm 

J + F 1 , 1 - I  +jFc F i , l - I - - -  

(3.3) 

- 0 (3.4) 
W 

where []r, indicates that  the quant i ty  in the bracket  is to be evaluated at k =/~ .  Equat ing 
the real and imaginary  parts  to zero separately we have 

Fa~  - I  G2'2 - 0, k =/~ ,  (3.5) 
' W 

/~ 2 -dk 1 , i - I - T "  r, " (3.6) 

The  first task is to solve (3.5) for/~.  For  brevity we restrict our  at tent ion to the case of  
two equal  basins:  b = b' ,  l = l ' .  Fur thermore ,  the junct ions are assumed to be at the 

centers o f  the sides on which they lie, i.e., Yl = Y2 = Y~ = b/2. This special case also 
turns out to be the mos t  interesting. 

Non-Helmholtz modes (n or m ~ O) 

An immedia te  consequence of  symmet ry  is that  n is even. For  na r row junct ions the resonant  

peaks must  be close to the natural  modes  of  the closed consti tuent  basins k,m. Let  

k - k,,, = A, A ~ k,,n. (3.7) 

By Taylor  expansion of  (2.5d) and (2.6) and taking only the dominan t  terms of  the series 
(2.12) and (2.10) it can be shown that  

c c cos nrc 2c 
= ' ~ and  W ~  I '  (3.8) F l ' l  "~ F i ' i  - F2'2 - s  Gl '2 ~ A cos m~ A 

where 

C - -  - -  

2k, mbl 
(3.9) 

Equat ion  (3.5) becomes approx imate ly  

e (c/A) 
A I(k,m) 2c/A - I' ~ O. (3.10) 

This is a quadrat ic  equat ion for  A, with the solutions 

E(,) A + _ = - f ~ L - k , , , = c  + ~ - T _ +  -~- + \ 2 i / j j ~ ,  m 

�9 J k n r n  

(3.11a) 
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where 

fl =- I/I ' .  (3.11b) 

The parameter fl characterizes the junction widths; it increases with decreasing al or 
increasing a2. Thus corresponding to any set of  (n, m) there are two distinct resonant 
wave numbers /~m- This is analogous to a coupled spring-mass system with two degrees 
o f  freedom (cf. Morse and Ingard [17], p. 63 if). The separation of the pair of modes is 
given by {[(1; 

/~+,, /~.-m = 2c + 21 k.m 

SO that as either junction widens the separation increases. 
Lastly we point out that in the special case of two equal square basins, b = b' = l = l', 

there are two equally dominant terms in the series of F .... FI,~, Gx,2. Hence the coefficient 
~c should be doubled. 

Helmhol tz  modes (n = m = O) 
To approximate (3.5), the procedure leading to equation (3.11) can be repeated to get 

1 2 
~ 1'. (3.13) F I ,  1 ~ G1, 2 ~ , W = k2bl 

Consequently, (3.5) becomes 

1 I (1/kZbl)2 ~ O, k /~ -/~oo. (3.14) 
kZbl (1/kZ)(1/2bl) - I'  

Using the fact that I varies with k rather slowly (logarithmically) we may solve k 2 formally 
from the above quadratic equation 

�9 

(~go)2 _ ~ [/~ + } + (/~2 + �88 (3.15) 

where the right hand side involves the same factor appearing in (3.11a). Equation (3.15) 
koo, /~oo which may be solved numerically.* Just gives two transcendental equations for ~+ 

as in the case of non-Helmholtz modes, the separation of resonant wave numbers/~o+o and 
/~oo increases with increasing a 1 or a2 through ft. 

4. Forced resonant response in coupled basins 

General formulas 
At a resonant peak, (3.3) and (3.5) imply that the discharges through J and J '  are relative 
maxima with the values: 

* The solution to (3.15) gives surprisingly good results compared to more direct computations shown in 
Section 6. 
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Q1 ~- 4g Ac5-1, 

341 

(4.1) 

(4.2) O_.[=-O.z= 9 Mz = 4gA ( -G-~)  
� 9  

jco co 

Here c5 = (gh)-~[c is a resonant frequency, and the overhead symbol (~) is used to denote 
quantities at resonance k =/~. Let the normalized fluxes be defined as q LO o I 

q = 4gA 4 ~ -  " (4.3a, b) 

We then have at resonance 

~-~1,  ~, ~ [ G~_ . (4.4a, b) 

It can be shown that (4.4a) holds for a harbor with one basin (B). It provides a simple 
formula for estimating the mean velocity through the harbor entrance. 

The peak (resonant) response of the free surface displacement at any point in the basin 
B or B' is, from (2.4a, b), 

(4.5a) I } = 2j Gl(xl, y l l y l ) -  ~ G2(xz, y:ly2) , 

~ ~ f G 1  2 . . . .  
= 2j l ~ - -  Gl(xl, Yl[Yl)j" �9 (4.5b) 

2A 

It is convenient to discuss the mean square responses defined by (2.19a) and (2.19b) which 
give, at resonance: 

W E1'2 + Ea r,' (4.6a) 

51, ~ E (4.6b) 
A~" 

Analogous to the simple harmonic oscillator we may define the .~ (quality) factor such 
that 

s 1 
- 2,~" (4.7) 

By using eq. (3.6) and straightforward differentiation an explicit formula for ~ may be 
obtained in the form 

f (~ " 
1,z kZb,l, G z 

1 
= ,~2[bl,~ + b'l',~,] - - -  (4.8) 

7"C 
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where E~, E1,2, Ea, E~ are defined in eq. (2.20a, b). We note that the half-width of a reso- 
nant peak in the plot of a t  vs k or a2, vs k is/~/~. 

If  the incident wave is a stationary random process with the one-dimensional wave 
number spectrum S(k) which varies slowly in k across the width of a peak, then the contri- 

<r/B), (r/Z~,) from the peak at/~ can butions to the total statistical mean square response ~- 
be estimated by 

(~>?, oc [Ska2/~.]~, <qz>~ ~ [Ska~,/~]~. (4.9a, b) 

These are called the modal mean squares by Miles [7]. 
The following discussion is again restricted to two equal basins with centered junctions. 

Non-Helmholtz modes 
Consider first the mean square response in the outer basin B. Keeping the dominant term 
in each of the series E~, Ez, E1,2 we have 

~n~m 1 
E1 ~- 2 (knmblA) 2 ' E2 ~ El' EI,2 - E1 cos m~z. (4.10) 

Upon substituting (4.10) and (3.8) into (4.6a) and using (3.5), it can be shown that 

6z ~- ' 2 /  e2m . (4.11) 

This formula is formally the same as that for a one-basin harbor [7] as if the inner basin B' 
were absent. Applying (4.11) to k~m separately and subtract, we have by using (2.17) 

D 
( ~ ) _  - (62)+ ~ - - I n  (/~+m//~,T,,), with D > 0. (4.12) 

7"C 

It follows that 

(SBz)_ > (~nz)+. (4.13) 

Crudely speaking, however, the difference is very small because of the proximity of/~+m and 
/~-m to k,,,. For practical purposes, the two peaks may be regarded as nearly equal. 

Let us now turn to basin B'. We get by using (3.8) and (3.1 la) that 

G,.2 ~ = [/~ _ �89 + (/~2 + �88 (4.14) 1 

W /_+ c o s  m ~  - 

The absolute value of (4.14) gives the normalized discharge through the opening d'; its 
dependence on the junction widths is plotted in Fig. 4.1. Thus at the higher mode/~+, ~_ 
is strongly affected by junction widths while at/~_, #L is much less so. 

Next we consider if2 n, for  the inner basin. Using (4.14) and 

E~ ~- c/(Ak, mbl) z, (4.15) 

and again (3.1 la) to eliminate A, we obtain 

_ =F/'GI'2\ 2 ,-1/ ~ - F 2 U  (/~-�89188 . (4.16) (~,). Lk ) L 8.~, .  /~ + �89 + (/~= + ~) J J~.~ 
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10 | I I I i (/ I I I I I 

343 

05 

01~§ 

0 5 I0 

IS=I/I' 
Figure 4.1. Approximate normalized discharge per unit depth through J '  at resonance, q~ for mode ~+. 

After some algebra it may be shown that, 

112t 
(#20+ t e.~,. /~ j ~ . . ,  

and 

= - , (4.18) 

hence 

__(#2')+ ~ (#2)_ [(f12 ..~ �88189 112 . (4.19) 

(#2)+ (#g,)- ~ /~ -k~ 

Now the right hand side of (4.19) is always less than unity, varying from 0 to unity as/1 
increases from 0 to oo. Hence we obtain the important result on the ordering of the resonant 
peaks, 

(#2')- > (#2)_ > (#2)+ > (#2,)+. (4.20) 

This is consistent with the numerical result in [10] and [11], for two equal circular harbors. 
Thus either by narrowing d' or by widening J, /3 decreases so that for the lower mode 
the ratio of inner/outer basin peak responses increases and the inner basin becomes the 
less protected. This may be regarded as an extension of the harbor paradox of the one-basin 
case [7]. On the other hand, widening J '  or narrowing J has the effect of equalizing the 
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peak responses in both basins, a resonable result in view of the stronger coupling between 
the basins. 

The quality factor can be deduced by using (4.11) and (4.16) in (4.8) with the result 

2+ ~- {kZbl(~)+ [2//z + 1 -T- (/32 + �88 (4.21) 

The modal statistical mean squares are 

(r/B>+ ~ (r/~'>-v oc +(fl) (4.22) 
k n m  

where 

B 2 
f-+(/3) = 2/3 z + �89 -T- (/32 + �88 (4.23) 

We remark that the first factor S/kbl  in (4.22) is the statistical modal-mean-square for the 
one-basin harbor, which is independent of the width of the harbor mouth a~. This is part 
of the harbor paradox [7]. Here the statistical mean squares of the two basins are affected 
by the two junction widths through the factor f_+(/3), defined in (4.23), which is plotted in 
Fig. 4.2. Thus by narrowing J '  or widening J, /3 decreases so that (r/~)+ and (r/z,)_ in- 
creases to the value of the one-basin harbor while (r/~)_ and (r/z,)+ decreases to zero. 
It is interesting that (r/~)+ and (q2,)_ are essentially equal and likewise for (r/B2)_ and 

1.0 

0 .5  

0 

I I 

B 

Y 

' I ' ' ' ' 

I 
I I I I I I 

5 10 

= I / I '  

Figure 4.2. Approximate dependence of modal statistical mean square responses of non-Helm_holtz modes 
on junction widths, {(V~)+, (~7~,)-} (S/kbl)-1 = f+ and ((V2)_, (~2,>+} (S/kbl)-X = f_.  
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Resonant scattering by a harbor with two coupled basins 345 

<@>+. Note that f+  + f _  = 1 and that the two curves in Fig. 4.2 are symmetrical about 

f = � 8 9  

H elmholtz modes 
In an analogous manner the Helmholtz-mode response can be analyzed. We merely point 
out that (4.11), (4.14) and (4.16) still hold formally, except that k,,~ must be replaced by 
~ +  
koo, the solutions to the transcendental equation (3.15). In terms of the local response 
(cf. (4.5)) the statement corresponding to (4.19) is 

(~B'/~B)_+ = {+ [(/32 + �88 + �89 (4.24) 

SO that 

- 1  < (~B'/(B)+ < 0 and 0 < ((B'/~B)- < 1. (4.25) 

It can be seen that the two basins are out of phase for the higher mode ~+ k0o and in phase 
for the lower mode/~oo, though within each basin the free surface rises and falls in unison. 

Lastly the modal statistical mean squares are 

8 2 } 
, (4.26a) 

[ ~/bi [8 + �89 + (/~2 + �88 + 1 -7- (/~2 + 1)2tl ~o0 

[ s4k 4 7 <~,>_+o~ ~ ~ j ~ _  

~ s#~ /~ + �89 -7- (8 2 + �88 I 
~x/b l  [fl + �89 +_ (/32 + �88 + �89 --I- (fl 2 + ~)~] r,%o" (4.26b) 

We point out that the factor S(I/bl) ~ is the modal response of the Helmholtz mode of the 
one-basin harbor [7], which increases as J narrow. The modification factors due to the 
coupling between basins are plotted in Fig. 4.3. Thus for the higher mode where the two 
basins are opposite in phase, the modal response of the outer basin decreases (curve 1) 
with increasing fl while that of the inner basin increases to a relatively small value then 
decreases (curve 2). For  the lower mode where the two basins are in phase, the outer basin 
response increases (curve 3) while that of the inner basin (curve 4) decreases to the same 
asymptotic value S(I/2bI) ~. In this limit the two basins oscillate as a single basin with 
twice the length because of the comparatively strong coupling between them. 

5. The effect of partitions of finite thickness 

In the preceeding analysis we assumed that the partitions between the ocean and the outer 
basin, and between the two basins were thin. For a harbor with a single basin, Carrier, 
Shaw and Miyata [8] found in numerical examples that the effect of finite length of the 
entry channel, i.e., finite thickness of the barriers near junction J, is qualitatively the same 
as if the width between the thin-walled barriers is reduced. This result can be generalized 
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Figure 5.1. The ratio of effective-width-to-actual-width of a junction as a function of the thickness-to-width 

ratio ~ .  Eq. (5.1) . . . . .  
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analytically by matched asymptotics for several junctions. Indeed, all the results obtained 
for thin-walled junctions can be reinterpreted for thick walled junctions if an effective 
width ae is introduced to replace the actual width a. More specifically, if the thickness of 
the junction (2d) is of the same order of magnitude as the width (2a) then the ratio ae/a 
can be expressed in terms of elliptic integrals, see [14] and [18]. We omit the details and 
only plot the ratio aJa in Figure 5.1 as a function of the thickness-to-width ratio d/a. 
Clearly, increasing the junction thickness amounts to reduction of junction width. A prac- 
tical approximation for d/a > 0.5 is [14] 

a~ 8 e x p [  ( ~z~-ad )1  - -  ~ -  - -  - + 1 ( 5 . 1 )  
a 

which is surprisingly close to the more exact result, see the dashed line in Fig. 5.1. 

6 .  N u m e r i c a l  r e s u l t s  

In order to confirm the analytical conclusions, we have performed computations for the 
root-mean-square responses o- B and a B, directly from (2.19a, b) without further approxi- 
mation. In examining the effect of finite junction thickness the results discussed in Section 5 
are utilized. 

The two basins are assumed to be square and equal and the junctions centered. The 
width of the entrance J is chosen to be 2a~/b = 3.10-z. In Fig. 6.1, the interbasin junction 
J '  is taken to be of the same width as J, both having zero thickness. Within the computed 
range 0 < kb _<_ 8, the distinct natural modes of one basin B or B' are 

kolb = ~ = 3.1415, ko2b = kzob = 2re = 5.2833, k2~b = x/5zc = 7.0248, 

which correspond to the second, third, and fourth pairs of peaks, respectively, the first 
pair being the Helmholtz modes. Clearly the ordering of the first three pairs of peaks 
obey (4.20). The ordering of the last pair of peaks is only in partial agreement with (4.20), 
because for the higher modes the parameter ka which is supposed to be small in the approxi- 
mation is beginning to become appreciable (>  0.107). As we shall see, however, (4.20) 
applies even for the fourth pair if ka is reduced. 

In Fig. 6.2 the width of J' is increased so that az = 4al ; the thicknesses of both J and J' 
are still zero. Let us examine the lowest three pairs of peaks. In comparison with Fig. 6.1, 
the separation between a pair/~• is indeed increased, and for the same mode the difference 
between the responses of the basins is reduced, as is predicted analytically. Note that for 
the fourth and highest pair of peaks the ordering rule (4.20) has deteriorated further for 
now kaz is greater than 0.426. 

In Fig. 6.3 we keep al = a2 but increase the thickness d2 of J' from zero to d2 = 2a2. 
In accordance with the results in Section 5, this is equivalent to a reduction in the actual 
width a2 of J'. In comparison with Fig. 6.1 we see that now even the highest pair of peaks 
obey the ordering rule (4.20), since ka2 is reduced to ~ 0.027. Moreover, as predicted the 
separation between pairs of peaks at/~e decreases while for the same mode the difference 
between the resonant responses of the basins is increased. 

2 In Figs. 6.1 to 6.3 the points where a~ o-~. are marked by vertical dashes the corre- 
sponding wave numbers are the real zeroes of W (cf. (2.16)). This is proven as follows. 
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As W approaches zero, (2.15a, b) imply that 

ToM 1 W 
2A G2 --+ 0, M 2 # 0, 

1,2 

which means that the mouth J is closed but flow can be allowed through J'. In other words, 
the real zeroes of W are the eigen wave numbers of the two coupled basins unconnected 
to the sea. From (2.19) it is easy to show that at these values of k ,  cr 2 ,,~ �88 ,,~ G2,. 

In Fig. 6.4 the normalized fluxes through the two junctions are plotted for a~ = a2. The 
peak values of q through J are indeed 1. Furthermore it can be noted that the values of 
kb  where q = 0 exactly correspond to the zeroes of W. Thus at these frequencies pressure 
is transmitted through the harbor entrance but mass is not. 

7. Concluding remarks 

By employing the method of matched asymptotics, and performing the partial summation 
of a series, we have obtained an analytic solution for a harbor with two rectangular basins 
coupled by narrow junctions. For  the special case of two equal basins with their line of 
centers normal to the coast the resonant spectrum and response are approximately analyzed 
in detail. Several interesting results suggested by numerical experiments of [10] and [11] are 
confirmed. While these results should be modified for other geometries (unequal basins or 
other junction positions or basins connected to narrow channels), similar method of solution 
and analysis can be conveniently applied [14]. Needless to say for arbitrary basin or coast- 
line geometry, recourse to numerical method is necessary. Nevertheless analytical effort can 
provide insight and guidance to these more complex problems. 

An interesting aspect which we did not study here is the possibility of oscillatory energy 
transfer between the basins in a transient problem. This is anticipated by analogy to the 
simple oscillator with two degrees of freedom [17], p. 67. 

Finally, it should be noted that the present theory ignores certain facts of reality, notably, 
boundary friction losses at the bottom and at the junction due to flow separation. These 
effects have an important influence on resonance by augmenting the total damping and 
thereby restricting the validity of the paradox. Some studies of the entrance loss have been 
made by ~nliiata and Mei [19] and Miles and Lee [9]. 
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Appendix A. Inner expansion of the source solution 

The typical source solution is given by (2.4). Omitting the subscript ~, it can be rewritten as 

G = - 
oo 2 ,,~'b COS k ( x  - l)  
22 - -  e -  ' Y . ( y ) Y o ( y )  + 

. = a mz kb  
e + Z I X.(x) + ~ 3 r.(y) E,(y). 
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The first series, obta ined f rom the original by  approximat ing  X .  for  large n, will be abbre-  
viated by P. The  residual series will be denoted by F ;  it has terms which die out  as (n-3)  

and can be efficiently computed.  The  series ff can be summed  exactly to give 

1 
ff = - - l n ( l l  - e -Zl2l l  - e-Z*[ 2) 

7c 

where 

71: 7~ 
Z =--ff  (x  + i(y  - y)) ,  Z* = - f f  (x  + i(y  + y)) .  

I t  may  be pointed  out  that  Z is the normal ized complex distance f rom the source to the 

field poin t  and Z* is the complex distance f rom the image source (with respect to the side 

y = 0) to the field point.  
We now derive the inner expansion of  G for  small r/b. Let us assume that  the source 

point  is far  f rom a corner :  y ~ 0 or  b/zc. By Taylor  expansion we get 

(2rcr  ~ ) ( ( b ) )  /V=__I In - - s i n  �9 1 + O  
zc b 

Note  that  as r ~ 0, ff ~ ( l /n)  In r, hence the corresponding mass  flux th rough  an infini- 

tesimal ha l f  circle centered at  the source point  o f  the side of  x > 0 is unity. This shows 
that  ff accounts  for  all the singular behavior  of  G, hence F is regular. The  leading te rm in 

the inner approx imat ion  is then 

1 ( 2 ~ r  ~z_~) 
G - - -  In - sin + F(0, YlY). (A. 1) 

7c 

I f  the ha rbor  entrance is very close to one corner  then one should account  for  the effect 

o f  the image source. The modif icat ion is s t ra ightforward but  will not  be considered here. 
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